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Abstract: A general method for handling nonuniform variance in data from assay 
calibrations is discussed. Calibration data from the analysis of ibuprofen and aspirin by 
high-performance liquid chromatography was analysed by the traditional least squares 
method; nonuniform error variance was found to be significant. Weighted least squares 
analysis overcomes the problem of nonuniform variance but relies on good estimates of 
the error variance. The method of extended least squares, a maximum likelihood 
method, is described which incorporates handling of the weighting in the regression 
analysis. The extended least squares method produces accurate and precise estimates of 
the parameters of the calibration and allows precise estimates of the variance of future 
predictions, provided that a sufficient number of calibrators are used. 

Keywords: Nonuniform variance; assay calibration; linear least squares; extended least 
squares. 

Introduction 

As most assay calibrations are linear the usual method of determining the ‘best’ 
calibration line is the method of ordinary linear least squares (OLS). In the application of 
OLS it is assumed that the data are randomly and normally distributed about the fitted 
line and that the error variance is constant. If the variance is not constant, OLS will be 
inefficient since the precision of the estimates of the slope and intercept will be poor 
although, on average, these estimates will be unbiased [l]. 

Weighted least squares (WLS), in which the squared deviation of each datum point 
from the fitted line is weighted by the reciprocal of the variance of that datum point, is 
the appropriate method to use when the variance in the data is not constant. There are 
two problems associated with WLS. First, the variance in the data is not generally known 
and, even when as many as five or six replicates are made, the estimate of the variance is 
poor. Second, the variance, if determined, is only known for the standards used in the 
calibration; consequently, variances at intermediate values have to be interpolated. The 
purpose of the present study was to investigate a more systematic approach to handling 
nonuniform variance (presented in part at the British Pharmaceutical Conference, 
Edinburgh, 1982 [2]). The results have been applied to calibration data for ibuprofen and 
aspirin obtained by high-performance liquid chromatography (HPLC). 

395 



396 LEON AARONS 

Experimental Methods and Results 

The ibuprofen assay was a reversed-phase HPLC method. The mobile phase was 
pumped through a 100 × 4.6-mm i.d. stainless-steel column packed with 5-1xm 
Spherisorb ODS (Phase Separations Ltd, UK) with a Waters M6000A pump. The Pye 
Unicam LC3 variable wavelength detector was set at 240 nm. The mobile phase was 
propan-2-ol-methanol-0.1% v/v acetic acid (40:5:55 v/v/v). All reagents were of AnalaR 
grade. 

Calibration standards (n = 30) containing ibuprofen at concentrations of 5-45 mg/1 
were prepared in 0.05 M phosphate buffer (pH 7.4). A 0.5-ml quantity of methanol 
containing phenylbutazone (internal standard; 20 rag/l) was added to 0.5 ml standard 
solution and, after mixing, a 20-1xl aliquot was injected on to the column using a 
Rheodyne model 7125 valve injector. Calibration graphs of the peak-height ratio of 
ibuprofen to phenylbutazone against ibuprofen concentration were linear over the range 
of concentrations studied (r = 0.9909; n -- 30). All replicate standards (m = 6) were 
independently prepared. 

The aspirin assay was also a reversed-phase HPLC method using a 250 x 4.6 mm i.d. 
ODS column (Zorbax, Du Pont). The model 440 Waters UV detector was set at 229 nm. 
The mobile phase was methanol-0.1 M phosphate buffer (pH 2.7) (52:48 v/v); flow rate, 
1 ml/min. 

Calibration standards (n -- 24) containing aspirin at concentrations of 0.05-10 mg/l 
were prepared in human plasma. To 1 ml of sample was added the internal standard 
solution (4-methoxybenzoic acid to give a concentration of 5 mg/l) and 0.5 ml of 
sulphuric acid (0.5 M); the mixture was extracted with 10 ml diethyl ether-hexane (1:1 
v/v) and back-extracted into 0.05 M phosphate buffer (pH 7.4). The pH of the aqueous 
extract was adjusted to about pH 2 to minimize aspirin hydrolysis, and 100 Ixl of the 
resulting solution (0.5 ml) was injected on to the column. All replicate standards (m -- 3) 
were independently prepared and the resultant calibration graph of peak-height ratio 
against concentration was linear over the concentration range studied (r -- 0.9986; n -- 
24). 

Data Analysis 

Background 
As noted in the Introduction, the major problem with WLS concerns the proper 

assignment of the weights. To overcome this problem it is possible to fit the 
experimentally determined variances to a model and to calculate weights for WLS using 
this model. However, this method would require two regressions to be performed, one 
for the variance model and one for the calibration; the method could be applied only 
when the experimental variances were known. 

A more systematic approach to the problem is to use the method of extended least 
squares (ELS) suggested by Sheiner and Beal [3]. ELS is a maximum likelihood method 
which attempts to determine both a structural model and a va.riance model. The 
objective function that is minimized in order to obtain the parameters, c, of the 
calibration is 

= X ¢- In [V(C,~,yi)]}. (1) 
® (c,~,y) i = 1 
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Minimizing equation (1) is equivalent to maximizing the likelihood with a normal 
distribution of errors [4]. The first term in equation (1) resembles a weighted sum of 
squares. The term f(cJJ is the structural model which in the present work is a linear 
function: 

y = co + ClX (2) 

where y is the peak-height ratio at concentration x. The function v(c,&y) is the variance 
model which contains additional parameters, 5. The purpose of modelling the 
variance is simply to account for changes in the variance. The variance parameters are of 
no interest in themselves and the function v(c,&y) should be chosen to be the simplest 
possible function that leads to accurate and precise estimates of the structural 
parameters, c. It should be noted that if equation (1) were minimized without the log 
term, this would force the variance to be infinite and hence indeterminate. 

Maximum likelihood estimators are known to be biased for small sample sizes and this 
bias may obviate any gain in efficiency. Raab [5] examined the problem of estimating a 
variance function for immunoassay data and found that unbiased and efficient estimates 
could be obtained by the use of a modified likelihood function. In order to assess the 
consistency and efficiency of the ELS estimates of the structural parameters, simulation 
studies were performed. 

Four experimental designs were used: 

design a x = 0.2, 0.4, 0.6, 0.8, 1.0 
design b x = 0.2, 0.2, 1.0, 1.0 
design c x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
design d x = 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0, 1.0. 

For each design exact data were generated using the relationship y = x and random noise 
was added. The random variation was taken from a normal distribution of mean equal to 
zero and variance equal to (0.01x2 + O.OOOl), which corresponds to a RSD of about 10%. 
The constant term, 0.0001, can be viewed as a constant background noise from the 
detector. 

Two variance models were investigated: 

v = 50 exp(b.9) 

v = Eo + El ws2, (4) 

where, 9 is the predicted value of the peak-height ratio [obtained from equation (2)] 
rather than the experimental value. The two models gave virtually identical results and 
only those for equation (3) are presented here. 

Equation (1) was minimized using a modified Newton method [6]. Asymptotic 
standard errors were obtained from an approximate covariance matrix calculated using a 
method devised by Gauss [7].* 100 simulations were performed for each design. A 
summary of the results of these studies is presented in Table 1. 

The structural parameters, CO, cl, were accurately determined in all four designs. 

* A FORTRAN 77 listing of the program is available from the author upon request. 
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Table 1 
Results of simulation studies 

Sensitivity5 

Design e,t Cl W4S 

Experimental* 

Theoretical 
Experimental 

Theoretical 
Experimental 

Theoretical 
Experimental 

Theoretical 

-0.009 
(0.032) 

&JO2 
(0.025) 
0 
0.001 

(0.013) 
0 

-0.002 
(0.009) 
0 

1.028 
(0.110) 
1 
1.013 

(0.103) 
1 
1.002 

(0.045) 
1 
1.006 

(0.046) 
1 

0.021 

0.033 
0.015 

0.026 
0.015 

0.015 
0.0076 

0.0086 0.051 0.058 

Wd D-s I/ELS 

0.053 0.353 0.102 

0.086 0.058 
0.053 0.358 0.073 

0.091 0.058 
0.057 0.338 0.098 

0.051 0.058 
0.046 0.393 0.062 

* Experimental results are the means of 100 simulations. 
t 4, & are the estimated intercept and slope; figures in brackets are S.D.s. 
$ le(c,), Be(c,) are the estimated standard errors of the intercept and slope. 
5 Sensitivity is defined as the concentration that gives rise to a 20% RSD. 
11 OLS = ordinary least squares; ELS = extended least squares. 

However, as expected, the standard errors of these parameters were underestimated by 
the ELS method. The theoretical values for the standard errors were obtained from the 
exact covariance matrix, calculated using the known variance-covariance matrix of the 
errors [8]. It can be seen that the problem is worse for designs a and b which have fewer 
data points. With 10 data points the standard error estimates are relatively close to the 
theoretical values. It is also worth noting that the ‘optimal’ designs, b and d, produce 
more precise estimates of co. 

Perhaps more important than the structural parameters themselves is the precision and 
accuracy with which the calibration can be used for future predictions. Of particular 
interest is the assay sensitivity as determined from the calibration. 

Following Liteanu and Rica [9] the assay sensitivity is defined as that concentration 
which gives rise to a particular RSD of prediction, chosen in this instance to be 20%. The 
variance of a prediction, x0, from the calibration plot is given by equation (5): 

v (x0) = vp _- J)], 

where y is the weighted mean for the calibration standards and y. is the observed 
peak-height ratio [lo] (see also Oppenheimer et al. [ll]). The RSD will be 20% when 

W(~o)l = 0 2 
. . 

X0 
(6) 

Equations (5) and (6) are solved simultaneously to calculate x0. 
The ELS method gives good estimates of the assay sensitivity particularly when 

compared with the OLS estimator (Table 1). Better prediction is obtained with 10 
calibrators and with the optimal designs b and d. 
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Application to ibuprofen 
The results of reproducibility studies are presented in Table 2. The variance in 

peak-height ratio at a concentration of 45 mg/l is about 25 times greater than at 5 mg/l. 
The data were analysed using the method of OLS. An inspection of the resultant residual 
plot, which represents the difference between observed and calculated values, clearly 
illustrates the nonuniform character of the error variance (Fig. la). This trend was 
confirmed using the F,&est [12]: 

F 
k 

= SS last k residuals 

SS first k residuals ’ 

where the numerator is the sum of squares of the k residuals at the highest concentration, 
and the denominator is the corresponding sum of squares at the lowest concentration. 
The most efficient value of k for this data set is six and the calculated value of F6 (26.4) is 
much greater than the critical value (8.47) at a confidence level of 99%. Hence the 
variance in peak-height ratio increases significantly with ibuprofen concentration. 

Consequently, the data were re-analysed using the method of WLS, in which each 
squared residual was weighted by the reciprocal of the estimated variance (Table 2). The 
parameter estimates and their standard errors are presented in Table 3. The OLS and 
WLS estimates of the slope, cl, are virtually identical. However, the precision of the 

Table 2 
Reproducibility studies for ibuprofen assay 

Concentration 
(mg/l) 5.1 10.1 20.2 30.2 46.5 

Mean peak- 
height ratio (n = 6) 0.1083 0.1977 0.4278 0.5916 0.9050 

Variance 0.00018 0.00023 0.00050 0.0021 0.0049 

RSD 13.4 7.9 5.0 7.8 8.5 

. 

Ibuprofen cnnc (mg/l) 

Figure 1 
Residual plots for ibuprofen calibration by OLS analysis and ELS analysis. The weighted residual is equal to 
the residual divided by the square root of the estimated variance of the data: bi - f(c,xJ]lV[v(c,[.yi)]. For 
OLS the weighted residual is the same as the residual. 
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Table 3 
Analysis of ibuprofen calibration data 

Method* 

OLS WLS ELS 

cot 0.0141 0.0057 0.0072 
(0.0138) (0.0067) (0.0062) 

Cl-4 0.0193 0.0199 0.0197 
(0.ooo5) (0.ooo5) (0.ooo5) 

* OLS = ordinary least squares; WLS = 
weighted least squares; ELS = extended least 
squares. 

t co = intercept. SC, = slope; figures in brackets 
are standard errors. 

OLS estimate of the intercept, co, is significantly worse than the WLS estimate. This is 
due to the failure of the OLS method to account for the reduction in error variance at low 
concentrations. The lack of precision in the OLS calibration is more evident in the 
calculation of assay sensitivity. The calculated sensitivity, 11.1 mg/l, is clearly an 
overestimate, given that the RSD in the peak-height ratio at an ibuprofen concentration 
of 5 mg/l is 13.4%. It is not possible to compute the assay sensitivity (as defined above) 
for the WLS method, since the variance is only known for the standards used in the 
calibration. 

The data were next analysed using the ELS method [variance model: equation (4)]. 
Estimates of co and cl (Table 3) were very similar to the OLS and WLS results. 
Comparison of the residual distributions from the OLS and ELS analyses (Fig. 1) shows 
that the ELS distribution is much more uniform. More significantly, the ELS estimate of 
sensitivity, 3.4 mg/l, is much more consistent with the author’s knowledge of the assay. 
The improvement in prediction obtained with ELS over OLS is shown in Fig. 2, where 
the RSD of prediction is plotted against concentration for the two methods. The line at 
20% determines the assay sensitivity. 

Application to aspirin 
The aspirin data were analysed using the OLS method and a trend can be seen in the 

resulting residual plot (Fig. 3). However, the trend is different from that seen in the 
ibuprofen data. The data seem to break into two distinct regions. Above an aspirin 
concentration of approximately 2 mg/l the error variance is much greater than below this 
concentration (Fs = 30.8). Within each region the variance is approximately constant. 
There is no apparent reason for this ‘break’. A change in the detector scale or a change in 
volumetric equipment between the two regions could give rise to such a phenomenon. 

The data were re-analysed using the ELS method with the following variance model: 

u = 51 [l - ff(x*)l + S2~(-& (7) 

where H(xJ = 0 for x G x1, H(x,) = 1 for x > x1 and Ez > tl. 
As with the ibuprofen calibration, the ELS estimates of the calibration parameters, co 

= 2.1 x 10e8 and c1 = 0.771, were not very different from the OLS estimates (CO = 3.5 X 
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_- __ OLS 

- ELS 

5 IO 15 20 

Concentration (mg /I) 

Fii2 
Calculated precision of prediction for ibuprofen calibration. 

Aspirm cone (mg/l) 

Residual plot for aspirin calibration: OLS analysis. 

lo-* and co = 0.756). However, the ELS estimate of sensitivity, 0.38 mg/l, was much 
smaller than the OLS estimate, 1.2 mg/l. 

Discussion 

A major advantage of OLS is its computational simplicity. Many small calculators are 
now pre-programmed to perform OLS analysis. Furthermore, even when the variance in 
the data is not uniform and particularly when the data are relatively precise as in the 
examples discussed here, the parameters may be well determined by OLS. However, 
OLS poorly estimates the variance associated with the fitted calibration line, particularly 
with the lower concentrations. Consequently, the OLS estimate of assay sensitivity is 
generally far too large. In theory WLS should overcome the shortcomings of OLS, but in 
practice it is difficult to obtain good estimates of the variance in the data. Moreover, it is 
not possible to estimate the variance at concentrations other than those of the standards 
used in the calibration and this makes the calculation of sensitivity difficult. 
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The ELS method resolves most of these problems. Weighting is automatically handled 
by the variance model and standards do not necessarily have to be replicated to 
determine the weighting function. However, it is advisable to conduct preliminary 
experiments to determine the nature of the variance model. Parameter bias can be 
reduced by using more calibrators. The simulations suggest that with 10 calibrators, 
accurate and precise estimates are produced of both the regression parameters and 
future predictions based on the calibration. The major disadvantage of the ELS method 
is that it requires much more computation than does OLS. However, with the 
proliferation of microcomputers and appropriate software this problem is becoming less 
important. It is now quite feasible to build ELS into a standard calibration software 
package. 
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